Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
Antioxidants (Basel) ; 13(2)2024 Jan 25.
Article En | MEDLINE | ID: mdl-38397745

Sulforaphane (SFN), which is a hydrolysis product from glucoraphanin, a compound found in cruciferous vegetables, has been studied for its potential health benefits, particularly in disease prevention and treatment. SFN has proven to be effective in combating different types of cancer by inhibiting the proliferation of tumors and triggering apoptosis. This dual action has been demonstrated to result in a reduction in tumor size and an enhancement of survival rates in animal models. SFN has also shown antidiabetic and anti-obesity effects, improving glucose tolerance and reducing fat accumulation. SFN's ability to activate Nrf2, a transcription factor regulating oxidative stress and inflammation in cells, is a primary mechanism behind its anticancerogenic and antidiabetic effects. Its antioxidant, anti-inflammatory, and anti-apoptotic properties are also suggested to provide beneficial effects against neurodegenerative diseases. The potential health benefits of SFN have led to increased interest in its use as a dietary supplement or adjunct to chemotherapy, but there are insufficient data on its efficacy and optimal doses, as well as its safety. This review aims to present and discuss SFN's potential in treating various diseases, such as cancer, diabetes, cardiovascular diseases, obesity, and neurodegenerative diseases, focusing on its mechanisms of action. It also summarizes studies on the pharmacological and toxicological potential of SFN in in vitro and animal models and explores its protective role against toxic compounds through in vitro and animal studies.

2.
Sci Total Environ ; 917: 170437, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38290670

The constant exposure of humans to a mixture of low doses of toxic substances, emerging from the daily emission of toxic dust containing various metals and organic compounds in electrical and electronic waste (e-waste) recycling areas, poses potential harmful effects on health and the environment. While individually recognized as endocrine disruptors affecting hormonal balance, the combined impact of these toxic substances in a mixture remains insufficiently explored, particularly in relation to reproductive health. Thus, the aim of this in silico analysis was to: (i) assess the relationship between the exposure to a mixture of DBDE, DBDPE, TBBPA, Pb, Cd and Ni and development of male and female reproductive system disorders; and (ii) demonstrate the ability of in silico toxicogenomic tools in revealing the potential molecular mechanisms involved in the mixture toxicity. As the main data-mining tool, Comparative Toxicogenomics Database (CTD) was used, along with the ToppGene Suite portal and GeneMANIA online server. Our analysis identified 5 genes common to all the investigated substances and linked to reproductive system disorders. Notably, the most prominent interactions among these genes were physical interactions (77.64 %). Pathway enrichment analysis identified oxidative stress response as the central disrupted molecular pathway linked to reproductive pathology in the investigated mixture, while our chemical-phenotype CTD analysis uncovered additional affected pathways - apoptosis, hormonal regulation, and developmental functions. These findings highlight an increased risk of reproductive system disorders associated with the exposure to the investigated mixture of toxic substances in electronic waste recycling areas, emphasizing the urgent need for attention to address this environmental health concern. Hence, future laboratory studies should prioritize investigating the specific genes and common mechanisms identified in this study.


Electronic Waste , Endocrine Disruptors , Male , Female , Humans , Dust/analysis , Electronic Waste/analysis , Endocrine Disruptors/toxicity , Metals , Recycling
3.
Environ Sci Pollut Res Int ; 30(50): 109546-109558, 2023 Oct.
Article En | MEDLINE | ID: mdl-37924173

The rapid trend of industrialization and urbanization can lead to greater exposure of the general population to chromium, cobalt, and nickel. Their total body burden from all routes of recent exposure, as well as interindividual variability in exposure levels, metabolism, and excretion rates, are reflected in the blood metal concentrations. The main goals in this study were as follows: observing the reference levels of chromium, cobalt, and nickel in the blood of the population living in Belgrade, identification of individual and sociodemographic factors that most affect their blood levels, and comprehension of recent exposure to chromium, cobalt, and nickel. Blood was sampled from 984 participants, voluntary blood donors, who agreed to participate in this study. Individual and sociodemographic data were collected using questionnaire adapted for different subpopulations. Blood metal analyses were measured using ICP-MS method (7700×, Agilent, USA). Our study provided reference values of chromium, cobalt, and nickel in blood for adult population (18-65 years) and confirmed that blood cobalt and nickel levels were mostly influenced by age and gender, and age, respectively. Furthermore, weight status affected blood chromium and cobalt levels, while national origin affected blood chromium levels. The present study highlighted the importance of human biomonitoring studies to monitor exposure status and identify subpopulations with increased exposure to chromium, cobalt, and nickel.


Chromium , Nickel , Adult , Humans , Nickel/analysis , Chromium/analysis , Cobalt/analysis , Serbia , Metals/analysis
4.
Front Biosci (Landmark Ed) ; 28(9): 204, 2023 09 15.
Article En | MEDLINE | ID: mdl-37796714

Titanium dioxide nanoparticles (TiO2NPs) are widely produced and used nanoparticles. Yet, TiO2NP exposure may possess toxic effects to different cells and tissues, including the brain. Recent studies significantly expanded the understanding of the molecular mechanisms underlying TiO2NP neurotoxicity implicating a number of both direct and indirect mechanisms. In view of the significant recent progress in research on TiO2NP neurotoxicity, the objective of the present study is to provide a narrative review on the molecular mechanisms involved in its neurotoxicity, with a special focus on the studies published in the last decade. The existing data demosntrate that although TiO2NP may cross blood-brain barrier and accumulate in brain, its neurotoxic effects may be mediated by systemic toxicity. In addition to neuronal damage and impaired neurogenesis, TiO2NP exposure also results in reduced neurite outgrowth and impaired neurotransmitter metabolism, especially dopamine and glutamate. TiO2NP exposure was also shown to promote α-synuclein and ß-amyloid aggregation, thus increasing its toxicity. Recent findings also suggest that epigenetic effects and alterations in gut microbiota biodiversity contribute to TiO2NP neurotoxicity. Correspondingly, in vivo studies demosntrated that TiO2NPs induce a wide spectrum of adverse neurobehavioral effects, while epidemiological data are lacking. In addition, TiO2NPs were shown to promote neurotoxic effects of other toxic compounds. Here we show the contribution of a wide spectrum of molecular mechanisms to TiO2NP-induced neurotoxicity; yet, the role of TiO2NP exposure in adverse neurological outcomes in humans has yet to be fully appreciated.


Metal Nanoparticles , Nanoparticles , Humans , Nanoparticles/toxicity , Antioxidants/pharmacology , Titanium/toxicity , Metal Nanoparticles/toxicity
5.
Sci Total Environ ; 895: 165181, 2023 Oct 15.
Article En | MEDLINE | ID: mdl-37385496

The current study aimed to examine the effect of toxic metal(oid) mixtures (lead (Pb), cadmium (Cd), arsenic (As), mercury (Hg), cadmium (Cd), chromium (Cr), and nickel (Ni)) on female reproductive function in Wistar rats after the 28- and 90-day exposure to dose levels calculated on the basis of the previously conducted human study. Experimental groups included: 2 controls (28- and 90-day), treated groups - doses based on: median- F2 (28) and F2(90) and 95th percentile concentrations in the general human population - F3(28) and F3(90); calculated lower Benchmark dose confidence limit (BMDL) for effects on hormone levels - F1(28) and F1(90) and a group given the doses calculated on the basis of the reference values from the literature (F4(28)). Blood and ovarian samples were collected for sex hormones and ovary redox status analysis. After 28-day exposure, changes were present both in prooxidants and antioxidants. However, after the 90-day exposure redox status imbalance was majorly caused by the disturbance of antioxidants. Changes in some parameters were observed even after exposure to the lowest doses. After 28-day exposure, the strongest dose-response relationship was found between hormones: LH and FSH and toxic metal(oid)s and, after 90-day exposure, between investigated redox status parameters: sulfhydryl groups, ischemia-modified albumin and nuclear factor erythroid 2-related factor 2 (Nrf2) and toxic metal(oid)s. Low obtained BMDLs and narrow Benchmark intervals for toxic metal(oid)s and some of the parameters might confirm the "no-threshold" paradigm. This study indicates possible detrimental effects of prolonged exposure to real-life mixtures of toxic metal(oid) on female reproductive function.


Arsenic , Mercury , Rats , Animals , Humans , Female , Cadmium/toxicity , Antioxidants , Biomarkers , Rats, Wistar , Serum Albumin , Metals/toxicity , Mercury/toxicity , Arsenic/toxicity
6.
Environ Res ; 227: 115818, 2023 06 15.
Article En | MEDLINE | ID: mdl-37004859

Toxic metals (cadmium (Cd), lead (Pb), mercury (Hg) and arsenic (As)) and plastificators (bis (2 - ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP)) and bisphenol A (BPA)) have been suggested to aid in colorectal carcinoma (CRC) advancement. Sulforaphane (SFN), isothiocyanate from cruciferous vegetables, diminishes chemical carcinogenesis susceptibility, but has been shown to act as a friend or a foe depending on various factors. By conducting the mechanistic toxicogenomic data mining approach, this research aimed to determine if SFN can alleviate toxic-metal and/or phthalate/BPA mixture-induced CRC at the gene level. Comparative Toxicogenomics Database, ToppGene Suite portal, Cytoscape software, InteractiVenn and Gene Expression Omnibus (GEO) database (GEO2R tool) was used. Among the mutual genes for all the investigated substances, SFN had a protective impact only through PTGS2. Other proposed protective SFN-targets included ABCA1, ALDH2, BMP2, DPYD, MYC, SLCO2A1, and SOD2, only in the case of phthalates/BPA exposure. The only additional gene relevant for SFN protection against the toxic metal mixture-induced CRC was ABCB1. Additionally, the majority of the top 15 molecular pathways extracted for SFN impact on phthalate and BPA mixture-linked CRC development were directly linked with cancer development, which was not the case with the toxic metal mixture. The current research has indicated that SFN is a more effective chemoprotective agent against CRC induced by phthalates/BPA mixture than by toxic-metal mixture. It has also presented the value of computational methods as a simple tool for directing further research, selecting appropriate biomarkers and exploring the mechanisms of toxicity.


Colorectal Neoplasms , Mercury , Organic Anion Transporters , Phthalic Acids , Humans , Public Health , Toxicogenetics , Phthalic Acids/toxicity , Isothiocyanates/toxicity , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/genetics , Benzhydryl Compounds/toxicity , Aldehyde Dehydrogenase, Mitochondrial
7.
Environ Sci Pollut Res Int ; 30(22): 61753-61765, 2023 May.
Article En | MEDLINE | ID: mdl-36932311

With global urbanization and industrialization, air pollution has become an inevitable problem. Among air pollutants, toxic metals bound to particulate matter (PM) have a high hazardous potential, contributing to the development of several diseases, including various types of cancer. Due to PM pollution, Serbia is considered to be among the most polluted countries in Europe. Therefore, the objective of the study was to assess and characterize the non-carcinogenic and carcinogenic risks of children's and adults' exposure to metal(oid)s (Pb, Cd, Ni, and As) bound to PM10 in five of the most polluted areas in the Republic of Serbia (Subotica, Smederevo, Bor, Valjevo, and Kraljevo). Non-carcinogenic (HQ and HI) and carcinogenic risk (CR) were calculated using USEPA methodology. Our results show that PM10 concentrations exceeded the annual limit of 40 µg/m3 at four out of five monitoring sites (ranging from 44.33 to 63.25 µg/m3). Results obtained from Bor monitoring station show that safe limits were exceeded for both children and adults, indicating an unacceptable risk (> 1) obtained for inhalation exposure to the As (HQ = 6.14) and Cd (HQ = 1.17), while total HI was 7.43, which characterized the risk as unacceptable. For the same station, the CR value was 1.44E-04 (> 1 × 10-4). In other sites, the risks were acceptable. The characterized risk from exposure to the toxic elements via PM10 in critical locations in Serbia contributes to improving air quality by requiring regulatory organs to take new actions and adopt new measures to reduce air pollution.


Air Pollutants , Metals, Heavy , Humans , Child , Adult , Particulate Matter/analysis , Carcinogens , Serbia , Cadmium , Metals, Heavy/analysis , Environmental Monitoring/methods , Air Pollutants/analysis , Heavy Metal Poisoning , Carcinogenesis , Risk Assessment
8.
Environ Res ; 217: 114829, 2023 01 15.
Article En | MEDLINE | ID: mdl-36410460

The present study investigated the effects of PCBs on the rat kidneys with attention given to the determination critical effect dose (CED) using the Benchmark dose (BMD) approach. Male albino Wistar rats (7 animals per group) were given by oral gavage Aroclor 1254 dissolved in corn oil at doses of 0.0, 0.5, 1, 2, 4, 8, or 16 mg/kg b.w./day for 28 days. The PCB nephrotoxicity was manifested by a dose-dependent changes in serum urea levels. The study has also revealed PCB-induced oxidative stress induction in kidneys. The observed nephrotoxic effects can be partly explained by oxidative damage of lipids and proteins in the kidneys due to observed reduced CuZnSOD activity and disturbances in antioxidant protection. Аll the renal oxidative stress parameters showed dependence on PCB oral doses as well as internal, measure kidney PCB levels. Calculated BMDL values were lower than estimated no observed adverse effect levels (NOAEL) based on the study, suggesting the importance of BMD approach use in future risk assessment.


Polychlorinated Biphenyls , Rats , Animals , Male , Polychlorinated Biphenyls/toxicity , Rats, Sprague-Dawley , Rats, Wistar , Kidney , Models, Animal
9.
J Hazard Mater ; 445: 130404, 2023 03 05.
Article En | MEDLINE | ID: mdl-36455319

Connections between the mixture containing bis(2- ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP) and bisphenol A (BPA) and liver injury were explored through in silico investigation and 2 in vivo models. Comparative Toxicogenomics Database (CTD), ShinyGO, ToppCluster and Cytoscape were used for bioinformatic analysis. In vivo subacute study was performed on rats - five groups (n = 6): (1) Control: corn oil, (2) DEHP: 50 mg/kg b.w./day, (3) DBP: 50 mg/kg b.w./day, (4) BPA: 25 mg/kg b.w./day, (5) MIX: DEHP + DBP + BPA. Zebrafish embryos were exposed to the investigated substances in different doses, singularly and combined (binary and ternary mixtures). Liver injury was linked to 75 DEHP, DBP, and BPA genes, mostly connected to inflammation/oxidative stress. In rats, significant alterations in redox status/bioelements and pathohistology were most notable or exclusively present in MIX (probable additive effects). BPA decreased liver area (LA) index in dose-dependent manner. DEHP (< 2 µg/mL) and DBP (≤ 5 µg/mL) reduced LA values, while their higher doses increased LA index. The effect of DBP in binary mixtures led to a lethal outcome at the two highest concentrations, while the hepatotoxicity of DEHP/DBP/BPA mixture was dictated by BPA (confirmed by the benchmark dose analysis).


Chemical and Drug Induced Liver Injury , Diethylhexyl Phthalate , Phthalic Acids , Rats , Animals , Diethylhexyl Phthalate/toxicity , Zebrafish , Phthalic Acids/toxicity , Dibutyl Phthalate/toxicity , Benzhydryl Compounds/toxicity
10.
Toxicol Rep ; 9: 778-787, 2022.
Article En | MEDLINE | ID: mdl-36561948

Many metals exhibit genotoxic and/or carcinogenic effects. These toxic metals can be found ubiquitously - in drinking water, food, air, general use products, in everyday and occupational settings. Exposure to such carcinogenic metals can result in serious health disorders, including cancer. Arsenic, cadmium, chromium, nickel, and their compounds have already been recognized as carcinogens by the International Agency for Research on Cancer. This review summarizes a wide range of epigenetic mechanisms contributing to carcinogenesis induced by these metals, primarily including, but not limited to, DNA methylation, miRNA regulation, and histone posttranslational modifications. The mechanisms are described and discussed both from a metal-centric and a mechanism-centric standpoint. The review takes a broad perspective, putting the mechanisms in the context of real-life exposure, and aims to assist in guiding future research, particularly with respect to the assessment and control of exposure to carcinogenic metals and novel therapy development.

11.
Environ Pollut ; 314: 120321, 2022 Dec 01.
Article En | MEDLINE | ID: mdl-36191801

Excessive fluoride (F-) levels in the environment could induce different pathological changes, including comorbidities in reproductive functions. Hence, the aim of the present in vivo study was to explore F- subacute toxicity mechanisms via Benchmark dose (BMD) methodology on rat's testicles. The experiment was conducted on thirty male Wistar rats for 28 days, divided into six groups (n = 5): 1) Control (tap water); 2) 10 mg/L F-; 3) 25 mg/L F-; 4) 50 mg/L F-; 5) 100 mg/L F-; 6) 150 mg/L F-. Testicles were dissected out and processed for the determination of F- tissue concentrations, redox status parameters, essential elements level, and DNA damage. PROASTweb 70.1 software was used for determination of external and internal dose-response relationship. The results confirmed a significant increase in superoxide anion (O2.-), total oxidative status (TOS), copper (Cu), zinc (Zn), iron (Fe), DNA damage levels, and decrease in superoxide dismutase activity (SOD1) and total thiol (SH) groups. The dose-dependent changes were confirmed for SOD1 activity and DNA damage. The most sensitive parameters were SOD1 activity and DNA damage with the lowest BMDLs 0.1 µg F-/kg b. w. Since human and animal populations are daily and frequently unconsciously exposed to F-, this dose-response study is valuable for further research regarding the F- health risk assessment.


Fluorides , Testis , Animals , Male , Rats , Copper/analysis , DNA Damage , Fluorides/toxicity , Iron/metabolism , Oxidation-Reduction , Oxidative Stress , Rats, Wistar , Sulfhydryl Compounds , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/metabolism , Superoxides , Testis/drug effects , Zinc/analysis
12.
Antioxidants (Basel) ; 11(10)2022 Oct 18.
Article En | MEDLINE | ID: mdl-36290767

We studied the potential role of exposure to various metal(oid)s (As, Cd, Cr, Hg, Ni, and Pb) in prostate cancer. Two cohorts were established: the Croatian cohort, consisting of 62 cases and 30 controls, and the Serbian cohort, consisting of 41 cases and 61 controls. Blood/serum samples were collected. Levels of investigated metal(oid)s, various parameters of oxidative stress, and prostate-specific antigen (PSA) were determined in collected samples. A comparison of the measured parameters between 103 prostate cancer patients and 91 control men from both Croatian and Serbian cohorts showed significantly higher blood Hg, SOD, and GPx levels and significantly lower serum SH levels in prostate cancer patients than in controls. Correlation analyses revealed the significant relationship between certain parameters of oxidative stress and the concentrations of the measured metal(loid)s, pointing to the possible role of metal(oid)-induced oxidative stress imbalance. Furthermore, a significant inverse relationship was found between the blood Pb and the serum PSA in prostate cancer patients, but when the model was adjusted for the impacts of remaining parameters, no significant association between the serum PSA and the measured parameters was found. The results of the overall study indicate a substantial contribution of the measured metal(loid)s to the imbalance of the oxidant/antioxidant system. Although somewhat conflicting, the results of the present study point to the possible role of investigated metal(oid)s in prostate cancer, especially for Hg, since the obtained relationship was observed for both cohorts, followed by the disturbances in oxidative stress status, which were found to be correlated with Hg levels. Nevertheless, further studies in larger cohorts are warranted to explain and confirm the obtained results.

13.
Environ Res ; 215(Pt 2): 114283, 2022 12.
Article En | MEDLINE | ID: mdl-36088992

The major goal of this study was to estimate the correlations and dose-response pattern between the measured blood toxic metals (cadmium (Cd), mercury (Hg), chromium (Cr), nickel (Ni))/metalloid (arsenic (As)) and serum insulin level by conducting Benchmark dose (BMD) analysis of human data. The study involved 435 non-occupationally exposed individuals (217 men and 218 women). The samples were collected at health care institutions in Belgrade, Serbia, from January 2019 to May 2021. Blood sample preparation was conducted by microwave digestion. Cd was measured by graphite furnace atomic absorption spectrophotometry (GF-AAS), while inductively coupled plasma-mass spectrometry (ICP-MS) was used to measure Hg, Ni, Cr and As. BMD analysis of insulin levels represented as quantal data was done using the PROAST software version 70.1 (model averaging methodology, BMD response: 10%). In the male population, there was no correlation between toxic metal/metalloid concentrations and insulin level. However, in the female population/whole population, a high positive correlation for As and Hg, and a strong negative correlation for Ni and measured serum insulin level was established. BMD modelling revealed quantitative associations between blood toxic metal/metalloid concentrations and serum insulin levels. All the estimated BMD intervals were wide except the one for As, reflecting a high degree of confidence in the estimations and possible role of As as a metabolic disruptor. These results indicate that, in the case of As blood concentrations, even values higher than BMD (BMDL): 3.27 (1.26) (male population), 2.79 (0.771) (female population), or 1.18 (2.96) µg/L (whole population) might contribute to a 10% higher risk of insulin level alterations, meaning 10% higher risk of blood insulin increasing from within reference range to above reference range. The obtained results contribute to the current body of knowledge on the use of BMD modelling for analysing human data.


Arsenic , Graphite , Insulins , Mercury , Arsenic/toxicity , Benchmarking , Cadmium , Chromium/analysis , Female , Graphite/chemistry , Humans , Male , Nickel
14.
Environ Int ; 165: 107313, 2022 07.
Article En | MEDLINE | ID: mdl-35635964

The main objective of this research was to conduct a dose-response modeling between the internal dose of measured blood Cd, As, Hg, Ni, and Cr and hormonal response of serum testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH). The study included 207 male participants from subjects of 5 different cohorts (patients with prostate, testicular, and pancreatic cancer, patients suffering from various thyroid and metabolic disorders, as well as healthy volunteers), enrolled from January 2019 to May 2021 at the Clinical Centre of Serbia in Belgrade, Serbia. Benchmark dose-response modeling analysis was performed with the PROAST software version 70.1, showing the hormone levels as quantal data. The averaging technique was applied to compute the Benchmark dose (BMD) interval (BMDI), with benchmark response set at 10%. Dose-response relationships between metal/metalloid blood concentration and serum hormone levels were confirmed for all the investigated metals/metalloid and hormones. The narrowest BMDI was found for Cd-testosterone and Hg-LH pairs, indicative of high confidence in these estimates. Although further research is needed, the observed findings demonstrate that the BMD approach may prove to be significant in the dose-response modeling of human data.


Mercury , Metalloids , Benchmarking , Cadmium , Humans , Luteinizing Hormone , Male , Testosterone
15.
Toxics ; 10(3)2022 Mar 21.
Article En | MEDLINE | ID: mdl-35324773

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancer types with a limited overall survival rate due to the asymptomatic progression of symptoms in metastatic stages of the malignancy and the lack of an early reliable diagnostic biomarker. MicroRNAs (miRs/miRNAs) are small (~18-24 nucleotides), endogenous, non-coding RNAs, which are closely linked to the development of numerous malignancies comprising PDAC. Recent studies have described the role of environmental pollutants such as nickel (Ni) in PDAC, but the mechanisms of Ni-mediated toxicity in cancer are still not completely understood. Specifically, Ni has been found to alter the expression and function of miRs in several malignancies, leading to changes in target gene expression. In this study, we found that levels of Ni were significantly higher in cancerous tissue, thus implicating Ni in pancreatic carcinogenesis. Hence, in vitro studies followed by using both normal and pancreatic tumor cell lines and increasing Ni concentration increased lethality. Comparing LC50 values, Ni-acetate groups demonstrated lower values needed than in NiCl2 groups, suggesting greater Ni-acetate. Panc-10.05 cell line appeared the most sensitive to Ni compounds. Exposure to Ni-acetate resulted in an increased phospho-AKT, and decreased FOXO1 expression in Panc-10.05 cells, while NiCl2 also increased PTEN expression in Panc-10.05 cells. Specifically, following NiCl2 exposure to PDAC cells, the expression levels of miR-221 and miR-155 were significantly upregulated, while the expression levels of miR-126 were significantly decreased. Hence, our study has suggested pilot insights to indicate that the environmental pollutant Ni plays an important role in the progression of PDAC by promoting an association between miRs and Ni exposure during PDAC pathogenesis.

16.
Toxics ; 10(2)2022 Jan 18.
Article En | MEDLINE | ID: mdl-35202231

Per- and polyfluoroalkyl substances (PFAS) are a group of over 4700 heterogeneous compounds with amphipathic properties and exceptional stability to chemical and thermal degradation. The unique properties of PFAS compounds has been exploited for almost 60 years and has largely contributed to their wide applicability over a vast range of industrial, professional and non-professional uses. However, increasing evidence indicate that these compounds represent also a serious concern for both wildlife and human health as a result of their ubiquitous distribution, their extreme persistence and their bioaccumulative potential. In light of the adverse effects that have been already documented in biota and human populations or that might occur in absence of prompt interventions, the competent authorities in matter of health and environment protection, the industries as well as scientists are cooperating to identify the most appropriate regulatory measures, substitution plans and remediation technologies to mitigate PFAS impacts. In this review, starting from PFAS chemistry, uses and environmental fate, we summarize the current knowledge on PFAS occurrence in different environmental media and their effects on living organisms, with a particular emphasis on humans. Also, we describe present and provisional legislative measures in the European Union framework strategy to regulate PFAS manufacture, import and use as well as some of the most promising treatment technologies designed to remediate PFAS contamination in different environmental compartments.

17.
Arch Toxicol ; 96(2): 467-485, 2022 02.
Article En | MEDLINE | ID: mdl-34905088

Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal and aggressive malignancies with a 5-year survival rate less than 9%. Early detection is particularly difficult due to the lack of symptoms even in advanced stages. microRNAs (miRs/miRNAs) are small (~ 18-24 nucleotides), endogenous, non-coding RNAs, which are involved in the pathogenesis of several malignancies including PDAC. Alterations of miR expressions can lead to apoptosis, angiogenesis, and metastasis. The role of environmental pollutants such as cadmium (Cd) in PDAC has been suggested but not fully understood. This study underlines the role of miRs (miR-221, miR-155, miR-126) in response to cadmium chloride (CdCl2) in vitro. Lethal concentration (LC50) values for CdCl2 resulted in a toxicity series of AsPC-1 > HPNE > BxPC-3 > Panc-1 = Panc-10.5. Following the treatment with CdCl2, miR-221 and miR-155 were significantly overexpressed, whereas miR-126 was downregulated. An increase in epithelial-mesenchymal transition (EMT) via the dysregulation of mesenchymal markers such as Wnt-11, E-cadherin, Snail, and Zeb1 was also observed. Hence, this study has provided evidence to suggest that the environmental pollutant Cd can have a significant role in the development of PDAC, suggesting a significant correlation between miRs and Cd exposure during PDAC progression. Further studies are needed to investigate the precise role of miRs in PDAC progression as well as the role of Cd and other environmental pollutants.


Cadmium Chloride/toxicity , Carcinoma, Pancreatic Ductal/pathology , MicroRNAs/genetics , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/genetics , Cell Line, Tumor , Disease Progression , Environmental Pollutants/toxicity , Epithelial-Mesenchymal Transition/drug effects , Gene Expression Regulation, Neoplastic , Humans , Pancreatic Neoplasms/genetics
18.
Food Chem Toxicol ; 158: 112671, 2021 Dec.
Article En | MEDLINE | ID: mdl-34793900

The aim of this study was to explore the mechanisms of bis(2- ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP) and bisphenol A (BPA) mixture-induced asthma development and test probiotic as a potential positive intervention. Comparative Toxicogenomics Database (CTD) and ToppGene Suite were used as the main tools for in silico analysis. In vivo 28-day experiment was conducted on rats - seven groups (n = 6): (1) Control: corn oil, (2) P: probiotic (8.78 * 108 CFU/kg/day); (3) DEHP: 50 mg/kg b.w./day, (4) DBP: 50 mg/kg b.w./day, (5) BPA: 25 mg/kg b.w./day; (6) MIX: DEHP + DBP + BPA; (7) MIX + P. Lungs, thymus and kidneys were extracted and prepared for redox status and essential metals analysis. By conducting additional in vitro experiment, probiotic phthalate and BPA binding ability was explored. There were 24 DEHP, DBP and BPA asthma-related genes, indicating the three most probable mechanisms - apoptosis, inflammation and oxidative stress. In vivo experiment confirmed that significant changes in redox status/essential metal parameters were either prominent, or only present in the MIX group, indicating possible additive effects. In vitro experiment confirmed the ability of the multy-strain probiotic to bind DEHP/DBP/BPA mixture, while probiotic administration ameliorated mixture-induced changes in rat tissue.


Asthma/chemically induced , Benzhydryl Compounds/toxicity , Endocrine Disruptors/toxicity , Phenols/toxicity , Phthalic Acids/toxicity , Probiotics/pharmacology , Animals , Computer Simulation , Humans , Kidney/drug effects , Lung/drug effects , Male , Oxidative Stress/drug effects , Rats , Thymus Gland/drug effects , Toxicogenetics
19.
Food Chem Toxicol ; 154: 112325, 2021 Aug.
Article En | MEDLINE | ID: mdl-34097988

Linkage between bis(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), and bisphenol A (BPA) co-exposure and type 2 diabetes mellitus (T2DM), as well as ability of multi-strained probiotic to reduce DEHP, DBP and BPA mixture-induced oxidative damage in rat pancreas were investigated. The Comparative Toxicogenomics Database, Cytoscape software and ToppGene Suite were used for data-mining. Animals were sorted into seven groups (n = 6): (1) Control group: corn oil, (2) P: probiotic: Saccharomyces boulardii + Lactobacillus rhamnosus + Lactobacillus plantarum LP 6595 + Lactobacillus plantarum HEAL9; (3) DEHP: 50 mg/kg b.w./day, (4) DBP: 50 mg/kg b.w./day, (5) BPA: 25 mg/kg b.w./day, and (6) MIX: 50 mg/kg b.w./day DEHP + 50 mg/kg b.w/day DBP + 25 mg/kg b.w./day BPA; (7) MIX + P. Rats were sacrificed after 28 days of oral exposure. In silico investigation highlighted 44 DEHP, DBP and BPA mutual genes linked to the T2DM, while apoptosis and oxidative stress were highlighted as the main mechanisms of DEHP, DBP and BPA mixture-linked T2DM. In vivo experiment confirmed the presence of significant changes in redox status parameters (TOS, SOD and SH groups) only in the MIX group, indicating possible additive effects, while probiotic ameliorated mixture-induced redox status changes in rat pancreatic tissue.


Benzhydryl Compounds/toxicity , Diabetes Mellitus, Type 2/prevention & control , Dibutyl Phthalate/toxicity , Diethylhexyl Phthalate/toxicity , Phenols/toxicity , Probiotics/therapeutic use , Protective Agents/therapeutic use , Animals , Apoptosis/drug effects , Computational Biology , Diabetes Mellitus, Type 2/chemically induced , Diabetes Mellitus, Type 2/genetics , Endocrine Disruptors/toxicity , Gene Expression/drug effects , Male , Oxidative Stress/drug effects , Pancreas/drug effects , Plasticizers/toxicity , Rats , Toxicogenetics
20.
Arch Toxicol ; 95(7): 2263-2278, 2021 07.
Article En | MEDLINE | ID: mdl-34028595

Metal dyshomeostasis, and especially overexposure, is known to cause adverse health effects due to modulation of a variety of metabolic pathways. An increasing body of literature has demonstrated that metal exposure may affect SIRT signaling, although the existing data are insufficient. Therefore, in this review we discuss the available data (PubMed-Medline, Google Scholar) on the influence of metal overload on sirtuin (SIRT) signaling and its association with other mechanisms involved in metal-induced toxicity. The existing data demonstrate that cadmium (Cd), mercury (Hg), arsenic (As), lead (Pb), aluminium (Al), hexavalent chromium (CrVI), manganese (Mn), iron (Fe), and copper (Cu) can inhibit SIRT1 activity. In addition, an inhibitory effect of Cd, Pb, As, and Fe on SIRT3 has been demonstrated. In turn, metal-induced inhibition of SIRT was shown to affect deacetylation of target proteins including FOXO, PGC1α, p53 and NF-kB. Increased acetylation downregulates PGC1α signaling pathway, resulting in cellular altered redox status and increased susceptibility to oxidative stress, as well as decreased mitochondrial biogenesis. Lower rates of LKB1 deacetylation may be responsible for metal-induced decreases in AMPK activity and subsequent metabolic disturbances. A shift to the acetylated FOXO results in increased expression of pro-apoptotic genes which upregulates apoptosis together with increased p53 signaling. Correspondingly, decreased NF-kB deacetylation results in upregulation of target genes of proinflammatory cytokines, enzymes, and cellular adhesion molecules thus promoting inflammation. Therefore, alterations in sirtuin activity may at least partially mediate metal-induced metabolic disturbances that have been implicated in neurotoxicity, nephrotoxicity, cardiotoxicity, and other toxic effects of heavy metals.


Mercury , Metals, Heavy , Sirtuins , Cadmium , Heavy Metal Poisoning , Humans , Metals, Heavy/toxicity , Protective Agents
...